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THE WAVEGU!DE EFFECT 

S. V. Sukhinin UDC 517.9+532.5+534.26 

The main purpose of scattering theory is the study of qualitative features of scattered 
waves. In the present study we investigate anomalous effects of the type of the waveguide 
effect for scattering problems by one-dimensional periodic structures. According to the 
definition of R. M. Garipov, the waveguide effect consists of the existence of eigenwaves 
localized in the vicinity of the structure. The properties of these waves are described 
by generalized eigenfunctions, being solutions of problems for steady-state oscillations. 
We consider existence conditions and the possibility of a waveguide effect for one-dimension- 
al periodic structures: for long waves on shallow water - a one-dimensional periodic under- 
water ridge of the plateau type; and for acoustic or electromagnetic waves - a one-dimension- 
al periodic lattice of plates or smooth obstacles.* 

I. Formulation of the Problem. Required Information. Let F describe on the plane I~ ~ 
of Cartesian variables (x, y) the boundary between free space and an obstacle. It is as- 
sumed that F can be connected by a curve or a set of quite smooth closed or disconnected 
curves. It is assumed that F is periodic along the y axis with period 2~. The obstacle 
can be penetrable or impenetrable (Fig. i). 

Wave effects near the obstacle are described by a quite smooth complex function u(x, y) 
outside the obstacle boundary F, whose physical content is specific to the problem. Let 
~i and ~2 be the regions into which F divides the plane R z. The contraction of the function 
u(x, y) to regions ~i and ~2 is denoted by u1(x , y) and u2(x, y), respectively. The func- 
tions u1(x, y) and u2(x, y) must be solutions of the Helmholtz equation: 

(A -;- Xzl~)~ I ~ Oin QI, (• -I- )~2)~2 = /in~2. (I.i) 

The following matching conditions are satisfied on the boundary F of the regions ~l and Q2: 

6u 1 = u 2, 7 0 u / ~ n  = OuJchl :on g. ( 1 . 2 )  

Here • > 0, 5 > 0, 7 > 0 are real, and ~ is a complex parameter, whose physical meaning is 
determined by the content of the effect investigated. The function f(x, y) describes 
sources of oscillation, and is assumed periodic in y with period 2~ and localized in the 
vicinity of the structure. All functions satisfy the condition of local finite energy 
[ule W21ocI(~i), u2e W~locl(~2)], and are assumed periodic along the y axis with period 
2~. 

The general solution of the homogeneous Helmholtz equation with parameter ~, satisfying 
the periodicity condition along y with period 2v, is 

u ( x , y )  ~] [ a ~ o x p ( i k y +  i Ix]c~)-~  ~ 

*The basic results of this study were presented at the 6th All-Union Congress on Theoretical 
and Applied Mechanics. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 92-101, March-April, 1989. Original article submitted February 9, 1988; revision 
submitted March 5, 1988. 
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Fig. i 

where o k = jX2 _ k2; k is an arbitrary integer, and ak• and bk• are complex numbers. 

For each fixed number k the expressions exp (iyk + ixo k) and exp (iyk - ixok) are waves, 
not proceeding in one direction with respect to the x axis (the degenerate case o k = 0 or 
Xz = k 2 is possible). Therefore, if the function u(x, y) describes wave scattering at the 
obstacle F, it can be assumed that at sufficiently large distances from the obstacle the 
coefficients satisfy bk + = b k- = 0 for all k (or ak + = a k- = 0 for all k). 

We further use 

Definition i.i. Condition (1.3), representing the solution of the Helmholtz equation 
with parameter X, satisfying the conditions of 2~-periodicity in y, in which all coeffi- 
cients bk +, b k- vanish (bk+ = b k- = 0), is called the radiation condition. A function of 
shape (1.3) satisfies the radiation condition of bk+ = b k- = 0 for all k. In relation (1.3) 
we select for x >> i the number ak+, and for x ~ -i, the number ak-. 

The terms describing the direction of wave propagation have a conditional nature, since 
time is reversible in the problems investigated in the present study. Considering problems 
describing scattering of plane waves by periodic structures, the coefficients bk+ and b k- in 
relation (1.3) must be given, since they describe incoming (not outgoing) waves. 

Usually the sign in front of ~%2 _ k 2 = Ok is selected in such a manner that the func- 
tion u(x, y, X) decreases upon moving away from the obstacle. The method of investigating 
the scattering problem, applied in the present study, is based on the idea of analytic con- 
tinuation of the radiation condition, of fundamental solution and solvent in the parameter 

on the Riemann surface of analytic continuation. It was first used in [I] to investigate 
scattering problems by finite smooth obstacles. 

The Riemann surface A of analytic continuation in X of the function of shape (1.3) 
(bk+ = b k- = 0) was described in [2-4] and possesses the following properties: A has an 
infinite number of branches; the points X = k (k = • • .... ) are second-order branching 
points; for each element ~ (X ~ A) there exists a number k0, such that for all integers k 
([k I > k 0) the inequality Im/X 2 - k z e 0 is satisfied. We note that if the solution of 
the Helmholtz equation satisfies the radiation conditions, then, for some elements X (%e A) 
it can increase with moving away from the obstacle. 

Depending on the physical content of the scattering problem conditions (1.2) on the 
obstacle boundary F can be replaced by the Dirichlet condition (6 = 0) 

or by the Neumann condition (y = 0) 

ulr = 0 ( 1 . 2a )  

Ou/Onlp ~ O. (1 .2b )  

For the upcoming discussion we need the following terminology [4]: 

Definition 1.2. A quasi-eigenvalue of the scattering problem (i.i) [(1.2), or (l.2a), 
or (l.2b)], (1.3) is an element X, of the Riemann surface A, for which there exists a non- 
trivial solution of the corresponding homogeneous (fE0) boundary-value problem. 

We then have [2-6] 

THEOREM I.i. The set A, of quasi-eigenvalues X, (%,e A,) of problem (i.i) [(1.2), or 
(l.2a), or (l.2b)], (1.3) is discrete on the Riemann surface A. Each quasi-eigenvalue has 
a finite multiplicity. For these X values which are not quasi-eigenvalues (X~ A\A,), the 
corresponding boundary-value problems have a unique solution. 
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The radiation conditions determine modes not proceeding in various directions along 
the x axis, including the case and only the case when for all k for which a k+ ~ 0 or ak- ~ 
0 in (1.3), the following inequality is satisfied: 

(R~ z ) ( ~ e y  ~ ~ - k ~) ~ o. ( 1 . ~ )  

For all k, sign (Re/~ - k 2) determines the propagation direction of oscillation modes, while 

sign (Im/l i - k f determines the damping or amplification of this mode upon moving away from 
the boundary. Conditions (1.4) make it possible to classify the quasi-eigenvalues according 
to the physical content of their corresponding quasi-eigenfunctions. We use the following 
terminology [4, 5]: 

Definition 1.3. The eigenvalue of problem (i.i), (1.2), (1.3) or (i.i), [(l.2a) or 
(l.2b)], (1.3) is the quasi-eigenvalue X, (X,e A,) for which conditions (1.4) are satisfied. 
The pseudo-eigenvalues are quasi-eigenvalues which are not eigenvalues. One can briefly 
say: quasi-eigenvalues = eigenvalues + pseudo-eigenvalues. 

We have the following very important 

Statement i.i. The eigenvalues of the scattering problem by a one-dimensional pe:riodic 
structure with conditions (i.i), (l.2a), (1.3) or (i.i), (l.2b), (1.3) can only be real num- 
bers. For penetrable obstacles the proof of Theorem 2.1 of [4] does not apply, since in 
this case the solution can have discontinuities or lose smoothness on the boundaries; there- 
fore, the conditions of the Holmgren theorem are not satisfied, and we have 

Statement 1.2. The eigenvalue of the scattering problem is real when an infinite num- 
ber of terms is contained in the radiation conditions (1.3) for the corresponding quasi- 
eigenfunctions. 

A simple example is given in [5] of the existence of complex eigenvalues of scattering 
problems by a penetrable structure. 

Statements i.i and 1.2 make it possible to formulate the waveguide effect for a one- 
dimensional periodic structure as the existence of eigenvalues and eigenfunctions of the 
corresponding scatteringproblems. The existence of an eigenfunction localized near the 
structure leads to a waveguide effect of the structure, and is possible only for a real eigen 
value. Therefore, the following discussion is devoted to the study of eigenvalues and eigen- 
functions of scattering problems. 

Comment i.I. The association of the element I, (k,e A) to one branch or another of 
the Riemann surface A is intimately related to the shape of the quasi-eigenfunction corre- 
sponding to X,. 

2. Periodic Chain of Resonators. The Waveguide Effect. Consider a possible waveguide 
effect for periodic structures of scattering problems, on which are described (i.i), (1.3) 
with conditions (l.2a) or (l.2b) on the boundary F. The possibility of a waveguide effect 
for one-dimensional structures is significant for various applied problems. The waveguide 
effect needs to be taken into account in investigating water waves near a periodic coast- 
line, as well as in investigating propagation of acoustic or electromagnetic waves near a 
periodic lattice or a periodic surface. 

Let F be a one-dimensional periodic chain of resonators with period 2~ [Fig. 2a, b: 
there is no resonator interior, and there exists only a channel (aperture); c, d: cavity 
of resonator flint]" The exterior is denoted in all cases by ~ext, the channel (aperture) 
by ~r and the characteristic length ~, width r The g value can be quite small in compari- 
son with K and other characteristic resonator sizes. For the following discussion the fol- 
lowing theorem is needed, whose proof is contained in [4]: 

THEOREM 2.1. If v 2 is an eigenvalue of the Laplace operator A in the region flint (the 
interior of a resonator) for functions satisfying the Dirichlet or Neumann conditions on 
the resonator walls (8flint), then there exists a small quasi-eigenvalue X*(E) corresponding 
to the scattering problem (i.i), [(l.2a) or (l.2b)], (1.3), so that we have 

v = ] im)~*  (e). ( 2 .  i) 
g~O 

Besides, in the Neumann problem (i.i), (l.2b), (1.3) there exist for all k quasi-eigenvalues 
such that 
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Fig. 2 

tim ~ (e) = karl. ( 2 . 2 )  

A cc o r d ing  t o  ( 2 . 1 )  and ( 2 . 2 )  t h e  l i m i t s  a r e  i m p l i e d  in  t h e  t o p o l o g y  o f  t h e  Riemann s u r f a c e  
A. The numbers  k~]g in  r e l a t i o n  ( 2 . 2 )  a r e  r e l a t e d  t o  t h e  e i g e n - o s c i l l a t i o n s  o f  an open c h a n  
n e l .  I f  t h e  wave p r o p a g a t i o n  v e l o c i t y  i s  e q u a l  t o  1, t h e n  k~/s  a r e  t h e  e i g e n f r e q u e n c i e s  
o f  t h e  c h a n n e l  f o r  q u i t e  s m a l l  e .  Theorem 2 .1  d i s c u s s e s  t h e  e x i s t e n c e  o f  q u a s i - e i g e n v a h e s  
on the Riemann surface h and the nearness to the real axis in some special cases. 

For convenience of the following discussion we write the formulation of the Neumann 
(or Dirichlet) problem, describing the quasi-eigenvalues I* and the quasi~eigenfunctions 
u*(x, y) of the scattering problem (i.i), (l.2b), (1.3): 

u(x, y + 2u) = u(x, y), OulOn = O (:or u----0) on F, 
+oo 

u(x,y)= E a - ~ e x p ( i y ] ~ + ~ l x l / ~ ) , l x l > > l ,  

( 2 . 3 )  

A. Scattering problems by a one-dimensional periodic lattice of plates have important 
applications in the areas of aeroacoustics [6-9] and electrodynamics [i0]. 

Let r be a lattice of segments, parallel to the x axis, periodic in the direction of 
the y axis with period 2~, modeling a one-dimensional periodic lattice of plates. The func- 
tions exp (ilx) and exp (-ilx) satisfy homogeneous Neumann conditions on r and are solutions 
of the homogeneous Helmholtz equation with parameter I. Let A 0 be the branch of the Riemann 
surface A with cuts (-~, -i) and (i, +~), on which the inequality ImV~ -~ - k 2 > 0 is satis- 
fied for all k. Due to Theorem 2.1, for certain values of s (the plate length) and e (the 
separation between any two plates) (Fig. 2a) there exist on the branch A 0 quasi-eigenvalues 
is. of problem (2.1). Let ue(x, y, I.~) be the quasi-eigenfunction corresponding to I.~, 
Im .~.~ -'-k ~ ~ 0. Since u,(x, y) is 'the solution of (2.1), for sufficiently large Ix] 
(Ixl "~ i) we have 

a ~ e x p ( i t x l E , ) .  E 
h~- -~ ,h~O 

Therefore, the function v, = u ,  --a0+exp(ixl ,) --a0-exp(--ixl. ~) is the solution of problem 
(2.3) when F describes a lattice of plates. We note that if the function u,(x, y, I,) in- 
creases upon moving away from the obstacle, then v,(x, y, i,) decreases. Therefore, it can be 
assumed that the quasi-eigenfunctions of the scattering problem by a lattice of plates do 
not increase with moving away from the lattice of plates if I is a real number, and decrease 
if Iml ~ 0. By means of the Green's formula one obtains a relation for the quasi-eigenfunc- 
tions u,(x, y, I,), t ,e Ao: 

(i v ~ , l ~ _  x~ i ~, 19 dao = O. (2.4) 
~O 

Here ~0 = ~ n {(x, y), 0 i y < 2~}. From (2.4) follows the equality Im I, = 0. The existence 
of real quasi-eigenvalues i, on the branch A 0 follows from (2.2) for sufficiently small e 
if Ik~l < s (k = • • .... , • 
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Let k 0 be the maximum integer for which the inequality Ik0~l < s is satisfied, and let 
be the number of segments modeling the lattice of plates (see Fig. 2). We then have 

THEOREM 2.2. In the vicinity of each number ~k, Vk = k~/s (k = • • .... • 0) there 
exists for sufficiently small e (e > 0) a real eigenvalue Xk* of problem (2.3), corresponding 
to an eigenfunction Uk*(X, y, Xk*) localized in the vicinity of the lattice F, in the sense 

that Uk*(X, y, Xk*) + 0 for Ixl + ~. 

The presence of real eigenvalues of problem (2.3) for a lattice of plates guarantees 
the possibility of a waveguide effect for the corresponding structures. Therefore, the state- 
ment of Theorem 2.2 describes the possibility of existence of a waveguide effect for a one- 
dimensional periodic lattice of plates, on which the homogeneous Neumann condition is satis- 

fied. 

B. Let the obstacle r possess the property 

F = F + (2g/N)e~. ( 2 . 5 )  

Here  and in  t h e  f o l l o w i n g  N i s  a n a t u r a l  number ,  and ey  i s  t h e  u n i t  v e c t o r  in  t h e  d i r e c t i o n  
o f  t h e  y a x i s .  R e l a t i o n  ( 2 . 5 )  i m p l i e s  t h a t  t h e  s t r u c t u r e  d e s c r i b i n g  r ha s  a p e r i o d  a l o n g  
t h e  y a x i s ,  e q u a l  t o  2~/N. In  F i g .  2, N i s  t h e  number o f  i d e n t i c a l  r e s o n a t o r s  in  t h e  band 
Y0 ~ Y ~ Y0 + 2v.  By a d i r e c t  c a l c u l a t i o n  i t  can  be v e r i f i e d  t h a t  i f  u ( x ,  y ,  h*)  i s  a q u a s i -  
e i g e n f u n c t i o n  o f  ( 2 . 3 ) ,  t h e n  u ( x ,  y + 2~/N,  X*) i s  a l s o  a q u a s i - e i g e n f u n c t i o n  o f  p r o b l e m  
( 2 . 3 ) ,  when t h e  o n e - d i m e n s i o n a l  p e r i o d i c  s t r u c t u r e  r i s  o f  o r d e r  2~/N ( 2 . 5 ) .  The whole  s o l u -  
t i o n  u ( x ,  y)  o f  p r o b l e m  ( 2 . 3 )  when F s a t i s f i e s  c o n d i t i o n  ( 2 . 5 )  can  be r e p r e s e n t e d  in  t h e  
form 

N 

(x, y) = E (x, 

The functions Un(X, y) satisfy the quasiperiodicity conditions (n = I ..... N) 

un(x, y + 2~/N) = u,~(x, g) exp (i2~n/N). ( 2 . 6 )  

These relations describe a specific oscillation near the one-dimensional periodic struc- 
ture, whose repetition period is smaller than the period along the structure axis of the 
unknown solution. One usually says that (2.6) describes an oscillation phase shift in ad- 
jacent regions near the one-dimensional periodic structure. 

Let Un(X, y, X) be the solution of problem (2.3), satisfying relation (2.6), ne {i, 
2 .... , N}. Then the following representation is valid sufficiently far from the structure 
(Ixl i) 

~,,~(x,y,Z)= Z c~exp[i(n+kN) y+ilx IV>~_(n+kN~]. (2.7) 

The coefficients Ck + and c k- in expansion (2.7) are related to the coefficients ak + and a k - 
in the radiation conditions (2.3) by the relations Ck + = an+kN +, c k- = an+kN-. The functions 
of shape (2.7) depend analytically on the parameter Z on the Riemann surface. The numbers 
• + kN) are the branching points. A substantial deviation of (2.7) from the radiation 
condition (2.3) is the absence for n ~ N of a "nonvanishing" term of the form a0 • 
The statement in the following lemma follows from the condition of selecting the branch A a 
and from (2.7). 

Lermna 2.1. If the quasi-eigenfunction u*(x, y, X*) satisfies for some number n (n 
{i, 2 ..... N - i}) condition (2.7), then u*(x, y, X*) decreases with moving away from the 
obstacle (Ixl ~ I) for all quasi-eigenvalues ~*, located on the branch A 0 of the Riemann 
surface A. 

The following theorem is valid for Fig. 2b: 

THEOREM 2.3. If m is the largest natural number for which the inequality m~/s < 
min {n, N - n} is satisfied, then for sufficiently small e there exist real eigenvalues (2.3) 
~k*(e) (-m ~ k ~ m), such that the relation k~/l = lim~(e) is satisfied. The eigenfunctions 

~0 

Uk*(X, y, k~ are localized in the vicinity of the structure, and satisfy relationship (2.6). 
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Proof. The existence of quasi-eigenvalues follows from Theorem 2.1. It follows from 
Lemma 2.1 that these quasi-eigenvalues are eigenvalues, and the eigenfunctions are localized 
in the vicinity of the structure shown in Fig. 2b. If the structures of Fig. 2c, d satisfy 
condition (2.5), then the following is valid. 

THEOREM 2.4. Let Vk 2 be the eigenvalue of the Laplace operator h in the region ~int 
for functions satisfying the Dirichlet or Neumann conditions on the internal boundary 8~int, 
and let m be the largest natural number for which the inequality IVml < min {n, N - n} is 
satisfied. It is assumed that v k (k = i, 2, ...) are sorted in increasing order (Ivll 
Iv21 g ... g l~kl ~ Irk+t1 ~ ...). For a sufficiently small ~ there exist real eigenvalues 
Xk*(e) of problem (2.3) (-m ~ k g m), such that the relations v~=]im%~(e) are satisfied. 

F~0 

When v k are quasi-eigenvalues of problem (2.3) in the region next, the eigenfunctions corre- 
sponding to lk*(S) are localized in the vicinity of the structure F. 

The proof is similar to the preceding one, since Lemma 2.1 is valid for the structures 
of Fig. 2c d. 

Comment 2.1. Since N (the number of identical resonance substructures in a period) 
can be arbitrarily large and the number n, determining the oscillation phase shift in neigh- 
boring substructures (2.6) is arbitrary (0 < n < N), then min {n, N - n} can be quite large. 

3. Underwater One-Dimensional Periodic Structure. The Waveguide Effect. In 1957, 
M. A. Lavrent'ev offered the hypothesis that the nonuniformity of the type of homogeneous 
underwater coast lines can serve as waveguides for surface waves on water. In 1965, Garipov 
[ii] showed, within the linear theory, that bottom surfaces, homogeneous in one of the vari- 
ables, can indeed be waveguides for surface waves. More detailed results were discussed 
in [12]. This process was investigated experimentally in [13]. Various aspects of the scat 
tering problem by a homogeneous coast line were investigated in [14-16]. 

In the present study we have considered, within the linear theory of the acoustic ap- 
proximation [12], existence conditions and the possibility of a waveguide effect for under- 
water one-dimensional periodic structures. In this case, the propagation of surface waves 
in shallow water is described by the equation [12] 

~ ~ g ~ h +-~J\ ~y l )="  

where ~ is the height of the fluid layer; g, the free-fall acceleraton; h, depth; f, the 
perturbation constant; and (x, y), Cartesian coordinates. Let ~l be the region in the (x, 
y) plane, periodic along the y-axis and bounded along the x-axis. The region ~ models the 
ridge projection on the (x, y) plane (Fig. 3). Let ~= be the complement to the'region ~ 
in the (x, y) plane. It is assumed that the regions ~ and ~= are periodic along the y axis 
with period 2~/N. If the depth is constant and equal to h~ and h2 in the regions ~ and ~2, 
respectively, and the time dependence is of the form [(x, y, t) = ~(x, y)exp (-imt), then by 
(3.1) the function ~(x, y) must satisfy the relations 

(A + oYgh,)~ I ---- 0 in ~i, (A ~- r = / inQ 2. (3.2) 

iHe~e the subscripts i and 2 denote the constriction of the corresponding functions to the 
regions ~ I and ~2. Let r be the boundary of the regions ~i and ~2. On the line r the depth 
varies jumpwise and, therefore, the following relations [17, 18] must be satisfied: 

~1 = ~2, h10~1 ~On -~ h20~2/On on. F (3.3) 

(n is the unit vector normal to the boundary F). It is assumed that the functions ~l and 
~2 satisfy the periodicity conditions along the y axis with period 2~, ~(y + 2~) = r 
The function f is also assumed to be periodic along the y axis with period 2~. Besides, 
it is assumed that f is localized in the vicinity of the structure, while the function 
satisfies the radiation conditions for large Ixl (Ixl m i). We have 

--{- ~o 

~= • a~exp(gkg+ /Ixl ~~), (3.4) 
h~--oo 

where k = m/~gh2; ak + and a k- are complex numbers; one chooses ak + if x m i and alk- if 
x~-l. 
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Fig. 3 

Relations (3.2)-(3.4) are a special case of problem (1.1)-(1.3), but the asymptotic 
behavior of the solution of this problem has a special shape, depending on h I (h i + ~) or 
h 2 (h 2 § ~), since this parameter appears both in the equation and in the boundary condi- 
tion. We have [5] 

THEOREM 3.1. The set of quasi-eigenvalues of problem (3.2)-(3.4) is discrete on the 
Riemann surface A. If h 2 + ~, the quasieigenvalues of problem (3.2)-(3.4) (here and in the 
following h I = i) are near the eigenvalues of the Dirichlet problem in the region ~i in the 
class of functions satisfying the periodicity conditions. All convergences are implied on 
some compact Riemann surface A with induced topology of A. 

This theorem makes it possible to describe qualitatively the behavior of the solution 
of the scattering problem on an underwater coast line when the frequency of the problem is 
close to that mentioned in the formulation of the theorem. The asymptotic localization of 
the quasi-eigenvalues and quasi-eigenfunctions in the vicinity of the corresponding eigen- 
values and eigenfunctions can be understood as a waveguide effect for the structure inves- 
tigated. It is advisable, however, to investigate the possibility and existence conditions 
of eigenvalues and eigenfunctions of problem (3.2)-(3.4), since they describe the waveguide 
effect in pure form. 

Let ~2 be a connected region; then ~a models a periodic chain of cavities if h i > h2, 
or a chain of underwater plateaux if h 2 > h I . We have 

THEOREM 3.2. When the region ~l models a chain of underwater mountains or cavities, 
problem (3.2)-(3.4) has only real eigenvalues. 

Proof. By Contradiction. Two cases are possible: i) under the radiation conditions 
(3.4) an infinite number of terms does not vanish, when the proof is similar to that of Theo- 
rem 2.1 of [4]; 2) under the radiation conditions (3.4) only a finite number of terms are 
nonvanishing. Let X, be a complex quasi-eigenvalue, and let v,(x, y, X,,) be a quasi-eigenfunc- 
tion of the problem. For x m i let there be 

L., (x, y, Z , )  = ~,~ (x, y~ Z , )  = E a+ exp(iny q- ix ]//X:- n"-). 
7t~--~ 0 

(3~ 

A function v2(x, y, X,) of form (3.5) can be defined for all numbers x, y, (x, y)~ R ~, and 
v2(x, y, X,) is the solution of the Helmholtz equation for all x, y. Therefore, a function 
w = v, - v 2 can be found, satisfying the Helmholtz equation for all x, y outside the boun- 
dary F [(x, y) # F], and identically vanishing for sufficiently large x (x ~ i). By the Holm- 
gren theorem it then follows that the contraction of the function w(x, y, I,) to the region 
~2 vanishes identically (wl~ 2 ~ 0), while ~2 is a connected region, which contradicts the 
radiation conditions. 

Let the region ~i consist of N connected components in the band 0 ~ y < 2~ and, besides, 
it is assumed to be periodic along the y axis with period 2v/N. Then the following is valid: 

THEOREM 3.3. The waveguide effect may take place for a one-dimensional chain of moun- 
tains. 

Proof. Let the region ~i be periodic along the y axis with period 2v/N (N > i). A 
solution of the scattering problem (3.2)-(3.4) when the sources satisfy condition (2.6) 

/(x, g + 2~/N) = / (x ,  y) exp (i2~n/N) 

for a natural number n (i ~ n < N) can be sought in the class of functions for which (2.6) 
is valid. 
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For the quasi-eigenvalues of problem (3.2)-(3.4) in the class of functions with condi- 
tions (2.6) Theorems 3.1 and 3.2 remain valid. It is necessary to point out that the re- 
gion ~i is disconnected, and has no less than N connected components in the interval 0 < 
y < 2~. 

An underwater periodic mountainous coast line is described by the relation h= m h I. 
Let ~k a be an eigenvalue of the Dirichlet problem in the region ill; more accurately, in one 
of the connected components of the region ~i. For large h 2 we find quasi-eigenvalues Ik~, 
so that I~k - Ik*~=] < h~2min{n, N - n} - l~kI" In this case it is sufficient to investi- 
gate those Dk lying in the interval -~/h2min {n, N - n} < ~k < ~min {n, N - n} (k = i, 2, 
.... k0), while Lemma 2.1 holds for the corresponding quasi-eigenvalues ik*. Hence follows 
what was to be proved. 

Comment 3.1. The number N of identical resonance structures in the band 0 ~ y < 27 
can be arbitrarily large, and the number n, determining the oscillation phase shift in neigh- 
boring substructures of a periodic obstacle ~i is, generally speaking, arbitrary, whence 
min {n, N - n} can be arbitrarily large. Therefore, since the quasi-eigenvalues depend dis- 
continuously on the parameters h I and h 2 if h I ~ h2, h I > 0, h 2 > 0 (the requirements of 
[19] are satisfied), the conditions of Lemma 2.1 are satisfied for a sufficiently wide choice 
of possible h I and h 2. 

For a connected region Sz it can be shown that for underwater obstacles of special shape 
(Fig. 4) a waveguide effect takes place. Let a structure of an underwater obstacle have 
a shape determined by a structural size of period 2~/N and by an r value characterizing the 
mountainous underwater resonator. We then have 

THEOREM 3.4. For sufficiently large h 2 and sufficiently small e, the structures of 
Fig. 4a-c possess a waveguide effect. 

Proof. For sufficiently large h 2 (in this case ~z models an underwater coastline) the 
quasi-eigenvalues of problem (3.2)-(3.4) are near the quasi-eigenvalues of the Neumann prob- 
lem in the region ~2, which for sufficiently small e are, in turn, close to the eigenvalues 
of the Neumann problem in ~0 and corresponding to the numbers describing the eigenoscilla- 
tions in the mountainous resonator [4]. Therefore, the conditions of Lemma 2.1 are satisfied 
for sufficiently large h a and small r for the quasi-eigenvalues. Consequently, in this case 
the structures of Fig. 4a-c possess a waveguide effect, which was required to be proved. 
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DEVELOPMENT OF THERMOCAPILLARY CONVECTION IN A FLUID CYLINDER 

AND CYLINDRICAL AND PLANE LAYERS UNDER THE INFLUENCE 

OF INTERNAL HEAT SOURCES 

V. K. Andreev, A. A. Rodionov, and E. A. Ryabitskii UDC 532.516:536.24.01 

Under weightless conditions, neither external forces nor forces associated with self- 
gravitation are strong enough to cause convective motion. However, convection may develop 
due to the fact that surface tension is dependent on temperature. 

The studies [i-4] investigated the conditions for the development of convection in a 
fluid during the heating of a solid or free surface. Here, we study the stability of the 
equilibrium state which develops in a liquid cylinder and cylindrical and plane layers under 
the influence of constant internal heat sources. Explicit formulas are obtained for the 
critical Marangoni numbers. It is shown that allowance for deformation of the free surface 
leads to a decrease in stability and the appearance of a discontinuity on the neutral curve. 
Also, the equilibrium state of the plane layer is more stable than in the analogous Pearson 
problem [i]~ 

!. Fluid Cylinder. Let a quiescent fluid cylinder contain constant internal heat 
sources of intensity q. Then the equilibrium state is described by the formulas 

u = ~ = w = O, p = c o n s t ,  O ( r )  =--qr~/(4%) ~ c o n s t .  ( 1 . 1 )  

Here, (u, v, w) are components of the velocity vector in the cylindrical coordinate system 
(r, ~, z); p is pressure; @ is temperature; X = const is the diffusivity of the fluid~ 

As the characteristic scales of length, velocity, pressure, and temperature, we choose 
the quantities b, ~/b, pv2/b2, and v~b/x (b is the radius of the cylinder, ~ is kinematic 
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